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Abstract: A topological index can be viewed as a conversion of a molecular structure to a real number
and it is also known as a parameter to predict important values related to molecular structure. In general,
irregularity indices are often used for quantitative analysis of non-regular graph of topological structure. In
various applications and challenges in biomedical engineering and chemistry it is important to understand
how irregular a molecular structure is? In this paper we determine the reverse irregularity indices of
polypropylenimine octamin dendrimers NS k|, NS k] and NS3[k].
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1. Introduction

D Dendrimers are nano-sized molecules with radially symmetrical structures, with very good
homogeneity and monodispersal arms [1]. Unusual properties like small size, high flexibility, cavities,

well-defined three-dimensional structure, and globular shape are acknowledged in dendrimers. These are
unusual candidates for the use of nano-technology and various biomedical purposes [2]. Dendrimers consist
of a fundamental atom or the group of atoms which we call the core, branches of other atoms known as
“dendrons" rise from this central structure through different chemical reactions. Compared to ordinary linear
polymers, dendrimers have significantly enhanced physical and chemical properties. Today dendrimers are
attracting huge number of people in the fields of material, nanoscience, chemistry, medicine and physics
because of their broad range of brilliant applications [3,4]. Let the maximum degree among the vertices of
graph G is denoted by A(G). The reverse vertex degree of a vertex v in G is defined in [5] as ¢, = A(G) —dy, + 1.
Graphs can be used to study theoretical and computational aspects of dendrimers. Recently this approach has
proved remarkable in relating properties of substances with involved structural parameters [6]. Topological
indices are used here as major ingredients [7]. Some nanotubes, modified electrodes, chemical sensors, micro-
and macro-capsule, and colored glasses can be designed using nanostar dendrimers. The structure of polymer
molecules in a plane depends on the adjacency of their units. Figure 1 shows the spatial arrangements of
NS1[1], NS;[2] polypropylenimine octaamin dendrimers in plane. The recursive nature of these dendrimers is
evident from this figure. Graph theoretic models of these dendrimers can potentially be used in fractals.
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Figure 1. Molecular structure of NS;[k] dendrimer with k = 1 and k = 2.
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In Figure 1, G; shows the structure of polypropylenimine octaamin dendrimers when k = 1, and G,
represents the structure of NS, k] when k = 2.
The next object will be polypropylenimine octaamin dendrimer NS;[k]. Figure 2 is a graph theoretical
representation for this dendrimer.
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Figure 2. Molecular structure of NS;[k] dendrimers.

The third object of interest is the NS3[k], also known as polymer dendrimer. Figure 3 shows the molecular
structure of this dendrimer.
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Figure 3. Molecular structure of NS3[k] dendrimers.

In the current article, we are interested in imbalance-based irregularity indices of the above discussed
families of three dendrimers. We use techniques from combinatorics and graph theory to avoid the use of
quantum mechanics, as has been done recently in most of the cases. Important tools which are used for this
purpose are structural and functional polynomials. These tools use structural parameters as inputs and the
outputs are the key information that is used to determine properties of the material under discussion. Certain
properties of matters like standard enthalpy, toxicity, entropy as well as reactivity and biological mechanics
are theoretically based on these tools. Estrada related the atom bond connectivity index with energies of the
branched alkanes.
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2. Preliminaries and Notations

In this part we lay out some basic material and notations which will be used throughout the article. All
graphs will be connected. We fix the symbol G for a simple connected graph, V(G) for the set of vertices
of G, E for the set of edges, d, and d, are the degrees of vertices u and v, respectively. Topological index
is an invariant of the graph that preserves the structural aspects of the graph. A degree based topological
index is based on the end degrees of edges. A graph is said to be regular if every vertex of the graph has
the same degree. A topological invariant is called irregularity index if the index vanishes for a regular
graph and is non-zero for a non-regular graph. Regular graphs have been investigated a lot, particularly
in mathematics. Their applications in chemical graph theory came to be known after the discovery of
nanotubes and fullerenes. Paul Erdos emphasized the study of irregular graphs for the first time in history
in [8]. At the Second Krakow Conference on Graph Theory (1994), Erdos officially posed an open problem
about determination of the extreme size of highly irregular graphs of given order [9]. Since then, the
irregular graphs and the degree of irregularity have become the basic open problem of graph theory. A
graph in which each vertex has a different degree than other vertices is known as a perfect graph. Authors
in [10], proved that no graph is perfect. The graphs lying in between are called quasi-perfect graphs in
which each, except two vertices, have different degrees [1]. A simplified way of expressing the irregularity
is the irregularity index. Irregularity indices have been studied recently in a novel way [12]. The first
such irregularity index was introduced in [13]. Most of these indices used the concept of imbalance of an
edge defined as imball,, = |dy, — d,|. The Albertson index, AL(G), was defined by Alberston in [43] as
AL(G) = Yver(c) leu — col. In this index, the imbalance of edges is computed. The irregularity index

IRLU(G) is introduced by Vukicevic and Gasparov in [44] as IRLU(G) = Y,ck(q) m‘;"(;uc,”c‘v). Recently,
Abdo et al. introduced the new term "total irregularity measure of a graph G", which is defined in [14] as
IRR{(G) = 3 ¥ock lou — co|- Recently, Gutman et al. introduced the ¢(G) irregularity index of the graph

G, which is described as 0(G) = Y uep(c) (cu — cv)2 in [5]. The Randic index itself is directly related to

2
_1
an irregularity measure, which is described as IRA(G) = Y,ck(c) (cu 2 —cy 2> in [16]. These indices

Cu _ Cu

Cy Cy

are given as IRDIF(G) = Yyper(c) , IRLF(G) = Yyper(c) 2L IRLA(G) = 2 ¥ per(c) o]

(C1¢~Cv) cotey /

IRGA(G) = Eyoer(c)In (545 ) and

2
IRB(G) = Lyvek(c) (cé - cé . Recently authors computed irregularity indices of a nanotube [17]. Recently
Gao et al. computed irregularity measures of some dendrimer structures in [18]. Actually, the authors
computed only four irregularity measures for some classes of dendrimers in [9]. These structures are used as
long infinite chain macromolecules in chemistry and related areas. Hussain et al. computed these irregularity
measures for some classes of benzenoid systems in [20].
In [21], V.R Kulli determined the first two reverse Zagreb indices, the first two reverse hyper Zagreb indices
and their polynomials of rhombus silicate networks and Hussain, et al. computed imbalance based irregularity
indices of polypropylenimine octamin dendrimers NS; k], NS,[k| and NS3[k|. Motivated by this work, we
introduce some revrese irregularity indices in Table 1 and compute these indices for polypropylenimine
octamin dendrimers NS [k], NS, [k] and NS;3[k].

Table 1. Reverse irregularity indices
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IRDIFC(G) = Y |¢+—¢ IRRC(G) = Y |cu—col
weE(G) " ° uveE(G)
IRLUC(G) = Y% [cu ol IRLFC(G) = Y. lcu—co]
( ) uveE(G) min(cuco) ( ) uveE(G) (cu-cv)
0C(G)= L (eu—co) IRLAC(G) =2 y leal
uveE(G) woeE(G) = "
2
1 1
IRAC(G)= ¥ (c2c2> IRGAC(G) = Y In|(5ute
( ) uveE(G) ! ! ( ) woeE(G) (2«/611-60
2
101
IRBC(G)= ¥ (cﬁ—cz%) IRR/C(G) =% T |eu—co
uveE(G) uveE

3. Main Results And Proofs

In this section, we represent our main results.

Theorem 1. Let G be graph of NSy [k| dendrimer. Then reverse irregularity indices of NSy [k] dendrimer are,

1. IRDIFC(G) = 10295

2. IRRC(G) = 24.2F —22

3. IRLUC(G) = 23.2F — 22

4. IRLFC(G) = (2"“)% +4(2k - 1)% +14(2F - 1)%

5. 0C(G) = 32.2k — 30

6. IRLAC(G) = 21222200

7. IRAC(G) = 2+ (338 ) 142" — 1) (233 + 142" — 1) (332)

8. IRGAC(G) = (2¢1)In 2%/6 +4(2k—1)In % +14(2F - 1) In 2\%

9. IRBC(G) = (2k1) (5 - 2\/6) 42k —1) (4 - 2\/??) +14(2F - 1) (3 - 2\@)
10. IRR;C(G) = 12.2F — 11

Proof. Let G be the graph of NS [k] dendrimer. From Figure 1, we have:

Table 2. Edge partition of NSy [k].

(dy,dy) Number of edges
(12) [Ena(G)| = 2¢*1
(13)  |E(G)| =4(2F-1)
22)  |Exn(G)|=122F-11
(23)  |En(G)| =14(2"—1)

where |E; ;4 (G)| shows number of edges corresponding to d, and d, of graph G. By using the definition

co = A(G) —dy, + 1, reverse edge partition is given in Table 3,

Table 3. Reverse edge partition of NS [k].

(cu, co) Number of edges
(32) CE5(G)| = 2+
(3,1 |CE31(G)| = 4(2F - 1)

)
22)  |CExn(G)| =122F—11
1)  |CEn(G)| =142~ 1)

where |CE;,, (G)| shows number of edges corresponding to ¢, and ¢, of graph G. With the help of the partition
given in the Table 3, we can easily find the required results. We apply these information to calculate our indices.

Since,
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IRDIFC(G)
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IRLAC(G) =

7.
IRAC(G) =

8.
IRGAC(G)

9.
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- f((zk+1)\3—2|+4( —1)13 -1 + (12.2F — 11)[2 — 2| + 14(2 —1)|2—1|)

The values of reverse irregularity indices of NS; [k] dendrimer for some growth stages k is shown in Table

10.
IRR;C(G) = = Z |cu — co
uveE
1
2
= 122F—11
O
4,

Table 4. Values for NS; [k] dendrimer.

Indices k=1 k=2 k=3 k=4 k=5
IRDIFC(G) 35 101.6667 235 501.6667 1035
IRRC(G) 26 74 170 362 746
IRLUC(G) 24 70 162 346 714
IRLFC(G) 16.1512 46.8208 108.1600 230.8304 476.1951
o C(G) 34 98 226 482 994
IRLAC(G) 14.9333 43.2000 99.7333 212.8000 438.9333
IRAC(G) 1.9828 5.8813 13.6781  29.2719  60.4593
IRGAC(G) 54823 12.3645 26.1288  53.6575 108.7149
IRBC(G) 49496 144450 334356  71.4168 147.3793
IRR;C(G) 13 37 85 181 373

Theorem 2. Let G be graph of NS;[k] dendrimer. Then reverse irregularity indices of NSy [k] dendrimer are,

1. IRDIFC(G) = 2227

2. IRRC(G) =8.2F—6

3. IRLUC(G) =82k -6

4. IRLFC(G) = (zk“)% +6(2k — 1)%

5. 0C(G) =82F—6

6. IRLAC(G) = 19215

7. IRAC(G) = (2&+1) (ﬂiaﬁ g

8. IRGAC(G) = (2**1)In f+4 2’<—1 42k —1) 1n2f
9. IRBC(G) = (21 (10 - 4v/6) +6(2" - (3 zf)

10. IRR;C(G) =4.2F -3

Proof. Let G be the graph of NS; [k] dendrimer. From Figure 2, we have:

Table 5. Edge partition of NS;k].

(dy,dy)  Number of edges
(1,2) |En2(G)| =2
22)  |En(G)| =82F-5)
(23)  |Exs(G)| = 6(2" —1)

where |CE; 4, (G)| shows number of edges corresponding to d,, and d, of graph G. By using the definition
co = A(G) —d, + 1, reverse edge partition is given in Table 6,

Table 6. Reverse edge partition of NS,[k].
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(cu,cv) Number of edges
(32) [CEx(G)| = 251
(22)  |CExn(G)|=82F-5
1)  |CEn(G)|=6(2"-1)

where |E.,¢, (G)| shows number of edges corresponding to ¢, and ¢, of graph G. With the help of the partition
given in the Table 6, we can easily find the required results. We apply these information to calculate our indices.

Since,
1.
IRDIFC(G) = u_ G
uveE Gy Cu
3 2 2 2 2 1
k+11(°2 4 k_ s _ = k_ c_ -
= 212 -3 + (8.2 5)’2 2’ 6(2 1)‘1 2‘
. 322k—27
3
2.
IRRC(G) = Y |eu—cof
uveE
213 — 2| + (82K —5)[2— 2|+ 6(2F —1)]2 - 1]
= 82F—6
3.
ey — ¢y
IRLUC(G) = ol
(G) u%E min(cy, cy)
k414 |3 = 2| ke 22 N |
(21 5 + (8.2 —5) 5 +6(2-1) :
= 82F—6
4.
IRLFC(G) = Y. lou — <ol
uveE CuCo
3-2 2-2 2-1
(3)(2) (2)(2) (2)(1)
1 1
( )\@ ( )\@
5.

oC(G) = Y (cu—co)
uveE(G)

= (23 -2)24+(82F—5)(2-2)2+6(2 -1)2—-1)?
= 82K—6
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IRLAC(G) = 2)_
uveE
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IRBC(G) = Y |a/?—c/?)

uveE

= (@)(V3- V2?2 + (82K —6) (\fz—fz) +6(2F—1) (V2 \f)
= (21 (10-4v6) +6(2 1) (3-2v2)

10.

IRR;,C(G) = = Z lew — co
uUEE

— % ((zk+1>|3 2]+ (825~ 6)2— 2 +6(2 ~1))2 1)

= 42k_3

O

The values of reverse irregularity indices of NS, [k] dendrimer for some growth stages k is shown in Table

Table 7. Values for NS, [k] dendrimer.
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Indices k=1 k=2 k=3 k=4 k=5
IRDIFC(G) 12.3333 33.6667 76.3333 161.6667 323.3333
IRRC(G) 10 26 58 122 250
IRLUC(G) 10 26 58 122 250
IRLFC(G) 5.8756 159939 36.2305 76.7036 157.6498
o C(G) 10 26 58 122 250
IRLAC(G) 4.6 12.2 27.4 57.8 8.6
IRAC(G) 05821 1.6788 3.8724 8.2596 17.0338
IRGAC(G) 04350 1.2233 2.8 5.9534 12.2601
IRBC(G) 14335 3.8965  8.8224  18.6742  38.3779
IRR;C(G) 5 13 29 66 125

Theorem 3. Let G be graph of NS3[k| dendrimer.

IRDIFC(G) = 52.2k — 27

IRRC(G) = 36.2F — 18

IRLUC(G) = 892,-36

IRLFC(G) = (32 )% + (33.2F —18)4
0C(G) = 36.2F — 18
IRLAC(G) = 16260

2

Sl

_ k 5
IRGAC(G) = (32%)In 3%

© o N SR L=

[y
S

IRR;C(G) =182k -9

IRAC(G) = 2* (53%2) + (3325 ~18) (
+(33.2 —18)In ;25
IRBC(G) = (3.25) (5 - 2\/6) + (332K —18)

Then reverse irreqularity indices of NSz k] dendrimer are,

3—3\/5)

(1203

Proof. Let G be the graph of NS3[k] dendrimer. From Figure 3, we have:

Table 8. Edge partition of NS3[k].

(dy,dy) Number of edges
(1,2) |[E1a(G)| = 3.2
22)  |Ex(G)|=27.2F—24
2,3)  |Ex(G)| =33.2F-18
(3,3) |E33(G)| = 6.2

where |E; 4 (G)| shows number of edges corresponding to d, and d;, of graph G. By using the definition
co = A(G) —d, + 1, reverse edge partition is given in Table 9,

Table 9. Reverse edge partition of NS3[k].

(cu,cv) Number of edges
(32) [CEx(G)| = 3.2°
(22) |CEx(G)| =272k 24
21) |CExn(G)| =33.2k—-18
(1,1) [CEn(G)| = 6.2F

where |CE,¢, (G)| shows number of edges corresponding to ¢, and ¢, of graph G With the help of the partition
given in the Table 9, we can easily find the required results. We apply these information to calculate our indices.
Since,
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IRDIFC(G) = u_ &
woekE | Cv Cu
3 2 2 2 2 2 1 1
= (B2Y|Z—Z|4+(@72F—24)|2 -2 2k—18)|= - = 2= -
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= 52227
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-2 2-2 2-1 1-1
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1 1
= (325 —=+(332F-18)—=
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oC(G) = Y (cu—co)
uveE(G)
= (3263 —-2)2+ (27.2F —24)(2 - 2)2 4 (332F —18)(2 — 1)? + 4(2F —1)(1 — 1)?
= 362F-18
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|cu — co
IRLAC(G) = 2y =4
( ) u%E Cu + Co
3-2| 22| 21| I1—1]
_ (32t 27.25 — 24 2F—18) =1 4 (6.2F
(3 572 )22 T2 -85 (6295
116.2F — 60

5
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uveE
_ AR k 1 1)\ K 1 1)?
= (32)<\/§ ﬁ) +(27.2 24)( ﬁ) + (332 18)(\[ ﬁ)
+(6.2%) (1 — 1>2
Vi V1
o (VAN e (192
= (3.2)<\£> +(33.2 18)< = )
= ok (5 _22\@) + (33.2F —18) (3_5‘&)
8.
Cy+Cop
IRGAC(G) = M;E;Elnzm
B L 342 b g 2T 2 b1 2t 1
= (32— (3)(2>+(27.2 24)In s (3)(1)+(33.2 18)In == B0
. 1+1
+(6.2)lnm
_ (39K 0 2 K 18)In ——
= (3291 2%+(33.2 18)1 N
9.
c(G _ 1/2 1/2 2
R ( ) uveE( )
- (325 ( 2)2+ (27.2% — 24) (\f—fz)2+(33.2’<—18) (\/E—ﬁ)Z
+(62%) (V1 - \f)
= (329 (5-2v6) + (332~ 18) (3-2V2)
IRR,C(G) = ;uggcu—cﬁ
= % ((3.2’<)|3 — 2|+ (27.2F —24)[2 — 2| + (33.2F —18)|2 — 1|)
= 182F—9
0

The values of reverse irregularity indices of NS;[k] dendrimer for some growth stages k is shown in Table
10.

Table 10. Values for NS;[k] dendrimer.
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Indices k=1 k=2 k=3 k=4 k=5
IRDIFC(G) 7 181 389 805 1637
IRRC(G) 54 126 270 558 1134
IRLUC(G) 51 120 258 534 1086

IRLFC(G) 36.3906 85.5092 183.7462 380.2204 773.1687
o C(G) 54 126 270 558 1134

IRLAC(G) 344 80.4 173.6 359.2 730.4
IRAC(G) 21599 5.0919 109558 22.6837  46.1395
IRGAC(G) 29493  6.6586 149772  31.0144  63.0889
IRBC(G)  8.8416 207716 441314 923512  187.7906
IRR,C(G) 27 63 135 279 567

4. Graphical Comparison

In this part we discuss behavior of ten reverse irregularity indices. That indices are given above in Table
1. In our graph dependent variable reverse irregularity index is along Y-axis and independent variable growth
stage number k is along X-axis. Value of reverse irregularity index depends upon the single parameter k that
is growth stage number of dendrimer structure. We plot NS; k], NSy[k] and NS3[k] on a single graph for
every irregularity index. Red color shows the behavior of NS;[k] dendrimer, green color shows the behavior
of NS;[k| dendrimer structure and blue color depicts the behavior of NS3[k| dendrimer structure. By using the
values of Table[4,7,10], we plot the graphs for all the reverse irregularity indices in Figures [4-12] and analyze
their behavior.

IRLFC(G)
x

2 3 4 5 8
Growth stage number (k)
NSi[k] ——— NS5[kl NS3[k] e

Figure 4. graph of IRLFC(G)
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From above graph it seems obvious that irregularities have a slight increase with an increase in growth
stage k. Comparison of reverse irregularity index IRLFC(G) of all three demdrimers is illustrated in Figure 4.
NS3[k] shows the greatest value and NS;[k] shows the lowest value and NS3[k| has greater value than NS, [k].
All other reverse irregularity indices given in Table 1 shows the similar behavior in Figures [5-12] with NS; [k]
shows the greatest value and NS [k] shows the lowest value and NS [k] has greater value than NS;[k].

5. Conclusion

In this work, we compute ten reverse irregularity indices of polypropylenimine octamin dendrimers

NS [k], NS [k] and NS3[k] and give their comparative graphical analysis. We expect that our results could
play an important role in predicting properties of these dendrimers such as enthalpy, toxicity, resistance and

entropy.
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