Authors: Fazal Dayan and Muhammad Iqbal
pp. 8– 17 open JSA-Vol. 1 (2022),
Abstract: This current study presents a SITR covid-19 model with two susceptible classes. We have developed three different schemes (Euler, RK-4 and NSFD) for the solution of the model. The results of all three methods are then compared by presenting a set of numerical examples. It has been revealed from the numerical results that the standard Euler and RK-4 methods do not preserve the positivity and convergence of the continuous model for a given step size, while NSFD schemes preserve these properties for the same step size. The stability of the developed NSFD method is studied and the consistency of the NSFD technique is discussed using Taylorâ˘AZ´ s series approximation. Error analysis of the developed scheme is also presented. The analysis of the model also reveals that the model remains stable at steady state points. Simulations results also confirm our findings.